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On the basis of the quasi-molecule model of electronic spectra of polar dye solutions, a description 
of structureless fluorescence spectra is accomplished. In the model, parameters of the spectrum 
have a simple physical interpretation and allow us to specify the dye-solvent interaction potentials 
in the initial and final states of fluorescence. These parameters for a few coumarin solutions are 
found by fitting theoretical distributions to the experimentally obtained spectra. A whole fluores- 
cence spectrum can be theoretically reproduced only when the anharmonicity of the motion of 
molecules in solution is taken into account. However, a main part of the spectrum can also be 
recovered in harmonic approximation. A criterion for the fitting range in this case is formulated. 
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I N T R O D U C T I O N  

Electronic spectra are the most important observa- 
bles of luminescent dye solutions. There is still a need for 
an efficient analytical representation of the spectra of so- 
lutions. The most important achievement in this field is 
the configurational model of  the spectra elaborated by 
Williams (~ and further improved by Huang and Rhys (2~ 
and independently by Pekar ~3~ to account for electronic 
spectra of solids. This model, without further modifica- 
tion, was used to describe the electronic spectra of  dye 
solutions (e.g., Ref. 4). To represent electronic spectra of 
dye solutions as well as the method of moments (5) the log- 
normal distribution (6) was employed. The methods of 
mathematical description of the spec~'a mentioned above 
have one feature in common: the parameters of the spec- 
tra are not related to the molecular parameters of  the so- 
lution. 

Previously we have shown (7 1~) a quasi-molecular 
model of  structureless absorption and emission spectra 
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of polar dye solutions. A characteristic way was em- 
ployed to account for intennolecular interactions in so- 
lutions. Dye molecules with their nearest surroundings 
are thought of  as quasi-molecules. This assumption al- 
lows replacement of the N-body problem involved in the 
calculation of molecular interactions in dye solutions by 
a one-body problem. The problem of molecular inter- 
actions is thus reduced to finding an averaged interaction 
potential. Electronic transitions taking place within 
quasi-molecules are influenced by vibrations of dye mol- 
ecules in an averaged force field. It is assumed that these 
vibrations are a decisive factor in shaping the profiles of 
electronic spectra of polar dye solutions. 

A theoretical treatment of the problem is difficult 
because of the complexity of  the system and calls for 
some approximations to be used. The adiabatic approx- 
imation for the wave-functions, the Condon approxi- 
mation for the transition moments, and the classical 
description of vibrations appear to be justified. On the 
other hand, additional approximations like the harmonic 
approximation or its anharmonic extension need exper- 
imental verification for each particular ease. 

On the basis of  the quasi-molecule model of the 
spectra a description of st~actureless electronic spectra 
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of polar dye solutions can be accomplished and relations 
of spectral parameters with those of the system investi- 
gated can be demonstrated. To show this, absorption and 
emission spectra of some coumarin solutions were ana- 
lyzed and resulted in an analytical description of the 
spectra of alcoholic solutions of coumarins in the har- 
monic approximation. Numerical values of the parame- 
ters of the spectra, which yield a satisfactory agreement 
between theory and experiment, could be found. The 
agreement covers a wide, but not the whole, frequency 
range of the spectra. This is not surprising since the 
movement of molecules in solution can be classified as 
a high-amplitude motion and hence the harmonic ap- 
proximation is not fully justified. A limitation of the har- 
monic approximation is the range of the fitting interval, 
which is unable to cover the whole spectrum without 
leaving the numerical values of the spectral parameters 
independent of the fitting range. 

In this paper some new criteria for the range of 
fitting intervals in the harmonic oscillator approximation 
are formulated and some modifications of the model of 
the spectra are proposed. To improve the quasi-molecule 
model of the spectra the anharmonicity in the motion of 
molecules in solutions is taken into account. It is shown 
that the new version of the model enables the fitting 
intervals to cover the whole frequency intervals of ex- 
perimentally obtained spectra. Within the framework of 
this new version of the model, more reliable interaction 
potentials can be obtained. In addition, some details of 
the fitting procedure are given. 

SEMICLASSICAL THEORY OF 
FLUORESCENCE SPECTRA IN HARMONIC 
AND ANHARMONIC APPROXIMATION 

The spectral distribution of the fluorescence of dye 
solutions, defined as 

f(g) = }70 E30"f(g) (l) 

can be obtained experimentally. Herein F(e)/Fo is the 
relative intensity of fluorescence, g the transition fre- 
quency, and 

cr,(g) = f P~(y) 8[f(y,g)]dy (2) 

is a spectral distribution of the transition cross section 
of fluorescence. In this formula Pc(Y) is the population 
distribmion of the initial state of fluorescence and 

f ( y ,  g) = AE(y) - g 

where the energy difference AE(y) = Ee(y ) - Eg(y). 
Here Ee(Y) and Eg(y) are the energies of the initial and 
final states of fluorescence, respectively. The dimension- 
less quantity, y = Q/Qo, is a relative displacement from 
a momentary equilibrium position and is equivalent to 
the displacement of Q in Qo units. F 0 is a normalization 
constant independent of y and g. 

According to the properties of the 8 distribution,( 12~ 
expression (2) may be written in the form 

of(g) = ~ k[y,(g)]Pe[yi(g)] (3) 
i 

where 

~Evi(e)] = 
dr(y, e)] 

y=yi(~) 

(4) 

with y~(e) being real roots of the equation 

f(y, e) = 0 (5) 

The summation in (3) must be taken over all real roots 
of (5) and the g-function in (2) has no meaning when 
if(y,  e) = 0. Thus the spectral distribution of the fluo- 
rescence cross section is the sum of the products of the 
population distribution of the initial state of fluorescence 
and the terms k[yi(e)] represent reciprocals of the gra- 
dients of appropriate energy differences of the combin- 
ing states. 

Equation (5) constitutes the relation between the 
transition frequency e and the relative displacement y. 
In the case of  a linear equation this relation is a func- 
tional one, otherwise, this equation possesses more than 
one real solution and an univocal relation between g and 
y does not exist. The number of solutions of (5) depends 
both on the order and on the numerical values of para- 
meters of the interaction potentials. For every real root 
of (5) there exists a definite branch of g on y dependence. 

The spectral distribution (3) depends on the choice 
of the interaction potentials in both of the combining 
states of fluorescence. They have to be chosen in such 
a way that expression (1) may fit the experimentally ob- 
tained spectra. Assuming that the redistribution of the 
population in a low-viscous dye solution takes place 
prior to the emission process, Pc(V) in (2) is just the 
Boltzmann population distribution. The unknown poten- 
tials may be approximated by a Taylor expansion with 
the odd terms ignored because of the symmetry. 
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The Harmonic Oscillator Approximation 

The harmonic oscillator quasi-molecular model is 
obtained by retaining only the quadratic term in the Tay- 
lor expansion of the interaction potentials. This model 
was discussed in Refs. 7 and 11. In this approximation 
an optical transition occurs between the initial and the 
final states of fluorescence expressed as 

and 

Ee(y) = Ce (y  - l )  ~ + b (6) 

E~(y) = Cg y2 (7) 

where y is the relative displacement from the momentary 
equilibrium position, b = Ee(1 ) - E~(0) is the 0-0 energy 
difference, and c parameters are products of  Q] and ap- 
propriate force constants or restoring coefficients which 
govern the vibrational motion of a dye molecule. 

In Eqs. (6) and (7) we have chosen Q = 0 for the 
momentary equilibrium coordinate in the ground state, 
whereas in the excited state our choice is Q = Q0. The 
numerical value of the quantity Qo is not known. How- 
ever, to describe the spectral profiles only relative dis- 
placements y = Q/Qo are needed. With these coordinates 
the energy minimum is found at y = 0 in the ground 
state and at y = 1 in the excited state, respectively. 

In the harmonic oscillator approximation two cases 
may be distinguished. 

1. cg = ce = c. Thenf (y ,c )  = b + c -  2 c y -  c. 
In this case kLvi(c)] in (3) does not depend on g, 
and consequently o-:(c) is simply a Gaussian dis- 
tribution. This case strongly disagrees with ex- 
perimental data. 

2. % ~ % In this case, Eq. (5) has two solutions 
and two branches of  g on y dependence should 
be recognized. The function fly, c) becomes a 
parabola with a maximum at Ym calculated from 
the equation 

df(y, ~) 
- -  - 0 ( 8 )  

dy 

In this case the spectral distribution (3) is asym- 
metric. The Ym divides the y axis into two parts 
for each branch of e on y dependence. Once y,,, 
is found, the short-wavelength limit of  the spec- 
trum ch~ is given and the transition frequencies 
e fall into an interval 0 < e < e~,,. 

Our previous quasi-molecular model of  the spectra 
in the harmonic oscillator approximation appears to be 
a useful first-order approximation which allows analysis 
of  electronic spectra of  dye solutions over a wide range 

of the transition frequencies c. However, two limitations 
arise from our analysis: 

(1) the parameters of the spectra depend somehow 
on the widths of  the fitting intervals, 

(2) the short wavelength limit introduces a singu- 
larity in the spectral distribution. 

These defects of the model are caused partially by some 
arbitrariness in the choice of  the fitting intervals. In our 
previous papers (7 H) the only criterion for an acceptable 
value of the fitting quality parameter used was X z, which 
should not exceed significantly a value of unity. This 
version of the quasi-molecule model of  the spectra is 
referred to as model I. 

It has to be realized that the harmonic oscillator 
approximation is justified only in those cases where the 
relative displacements in both of the states, the initial 
and final states of fluorescence, are simultaneously 
smaller than unity. This means that the frequency inter- 
val where this approximation is justified should not sig- 
nificantly exceed, according to (5), a frequency interval 

b -  c a < c < b + co 

This covers the entire short-wavelength tail of  the fluo- 
rescence spectrum up to the maximum. This constitutes 
a new criterion for the choice of  the fitting interval. A 
harmonic approximation model with this new criterion 
is referred to as harmonic model II. It is obvious that a 
change of the fitting interval results in a change of the 
numerical values of  the determined molecular parame- 
ters. 

The Anharmonic Approximation 

The vibrational motion of a dye molecule within a 
quasi-molecule, arising from the large mass of  the mol- 
ecule and small interaction forces acting in the solution, 
may be classified as a high-amplitude motion. The idea 
of extending the quasi-molecular model of  the spectra 
by introducing anharmonicity terms in the interaction 
potentials is a straightforward consequence of the prop- 
erties of  the high-amplitude motion/TM There are many 
ways to account for the anharmonicity. However, be- 
cause the experimentally obtained electronic spectra of 
polar dye solutions, seen from the mathematical point of  
view, appear to be distributions, dependent on only a 
few parameters, modification to the existing model 
should limit the introduction of new ones. 

The simplest improvement of  the model can be ob- 
tained when the number of  parameters increases by only 
one. Careful examination of the problem results in a 
modification where the Cg parameter in (7) is replaced 
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by a substitution of the type 

Cg := Cg + Can y2 (9) 

where %, is an anharmonicity coefficient, measured in 
cm ~ units. Here the interaction potential for the initial 
state of  fluorescence is left unchanged since most of  the 
transitions initiate from the relaxed excited state, where 
the amplitudes of  the motion are relatively small. This 
is a crude but necessary approximation required to limit 
the increase in the number of parameters of the model 
by one. 

The initial and improved final state of  fluorescence 
will read 

E e ( y  ) = c e ( y  - 1 )  2 Av b ( 1 0 )  

and 

Eg(y) = cg y 2 + CanY 4 (11) 

Formula (3) leads to the analytical form of %(~) only if 
an analytical solution of (5) exists. This is not the case 
in the anharmonic model and calculations of spectral 
profiles (3) with the potentials (10) and (11) have to be 
performed numerically. 

It is essential for the quasi-molecular model of  the 
spectra that in the final Franck-Condon state, the mo- 
lecular interaction is larger than in the initial equilibrated 
state. For fluorescence this leads to the relation 

cg > ce (12) 

Additionally, for the anharmonic approximation, % > 0 
for all of the examined spectra, leading to the inequality 

O2f(y, e) 
- -  < 0 (13)  

0y 2 

for both harmonic and anharmonic approaches. This 
means that fly, a) has one and only one maximum with 
respect to y, at Ym--  calculated from (8). In the harmonic 
ease ,  

Ce 
(14) 

Ym -- (Cg -- Ce) 

whereas in the anharmonic case, 

with 

t 
p 2  _ 27. ( C g  - -  Ce )  

1 . 2 2.  _ _  (15) 
Ym = ~--~ ~Can " p 

3 - -  1 
P = [~/2 " (cg - Ce)  3 -t- 27 �9 Ce 2 �9 Can - -  3~" c e �9 ~ / C a n ]  ~ 

Consequently the limiting value eli,, may be calculated 

from the relation 

El~m = AE(Ym) (16) 

Because eti,, in the anharmonic approximation falls far 
beyond the short-wavelength edge of the fluorescence 
spectrum, the fitting procedure may be performed with 
a satisfactory result for the whole spectral distribution 
of fluorescence. 

EXPERIMENTAL V E R I F I C A T I O N  

All versions of  the quasi-molecule model of the 
spectra discussed, harmonic models I and II as well as 
their anharmonic extension, need experimental verifica- 
tion. Results of the analyses of fluorescence spectra for 
a series of coumarins in ethyl alcohol are presented in 
Table I. In Table I, in addition to the usual molecular 
parameters b, cg, and ce for the two harmonic models, a 
parameter ca, is added to account for the anharmonicity. 
The limits of the fitting intervals emi n and e .... the X 2 
parameters, and the short-wavelength limits of the spec- 
tra el/m for each version of the model are also included. 

It should be noted that the short-wavelength limi- 
tation of the fluorescence spectrum in harmonic model 
II is shifted considerably toward high frequencies out- 
side the spectrum and the singularity in the spectral dis- 
tribution falls outside the range of interest. The price we 
pay is the slightly larger values of the X 2 parameters 
compared to that in harmonic model I. This comes from 
the fact that a long-wavelength part of the spectrum is 
not considered in the fitting procedure. 

Further, the values of  the 0-0 energy differences 
show minor disagreement from each other in harmonic 
model II and the anharmonic one in all of the investi- 
gated cases. The same may be said about the cg para- 
meters. However, in the case of the Ce parameters, where 
the anharmonic correction was not introduced, this is not 
so and causes a serious increase in their numerical val- 
ues. The anharmonicity coefficients are positive in all of 
the cases investigated and therefore indicate an increase 
in the interaction forces with the increase in the vibration 
energy. 

The improvement of the fit in the case of the an- 
harmonic version of the model is evident. It has the ad- 
vantages of both the harmonic versions of  the model, 
namely, a wide fitting range and a lack of singularity. 
Additionally, the fitting range in the new version of the 
model covers the whole fluorescence spectrmn. Figure 1 
is an illustration of the improvement of  the quasi-mol- 
ecule model of fluorescence spectra made by introducing 
anharmonicity. As an example, in Figs. la, b, and c the 
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Table I. Molecular Parameters of Alcoholic Coumarin Solutions Calculated in the Framework of Quasi-molecule Models of Fluorescence 
Spectra 

M ode l  Eml n gm~ bf Cg co c ~  E~im X 2 

Coumarin 120 
Harmonic I 20,000 25,600 24,715 1,888 849 26,244 I. l 1 
Harmonic II 22,753 26,490 25,017 1,998 1,285 28,613 1.3 
Anharmonic 17,513 26,490 25,039 1,928 1,501 295 28,916 0.33 

Coumarin 175 
Harmonic I 19,500 25,510 24,567 2,132 1,027 26,550 1.06 
Harmonic II 22,247 26,455 24,806 2,243 1,385 30,066 0.66 
Anharmonic 17,007 26,455 24,869 2,156 1,676 290 29,278 0.15 

Coumarin 2 
Harmonic I 20,000 25,315 24,313 1,876 872 25,945 1.26 
Harmonic II 22,422 26,212 24,538 1,907 1,221 27,932 1.24 
Anharmonic 16,502 26,212 24,523 1,882 1,318 227 27,730 0.47 

Coumarin 138 
Harmonic I 19,500 25,000 24,144 2,166 1,098 26,375 0.66 
Harmonic II 21,906 26,525 24,396 2,291 1,485 28,611 0.7 
Anharmonic 16,807 26,525 24,488 2,169 1,907 362 29,797 0.13 

Coumarin 10 
Harmonic I 19,010 24,010 22,873 1,717 718 24,109 1.23 
Harmonic II 21,008 24,600 22,990 1,670 870 24,810 0.91 
Anharmonic 16,821 24,600 22,963 1,713 890 118 24,711 0.51 

i 

calculated spectra according to harmonic model I, har- 
monic model II, and the anharmonic model, respectively, 
are compared with the experimentally obtained fluores- 
cence spectrum of a coumarin 2 solution (dots). Only in 
Fig. l a can the singularity induced by the short-wave- 
length limit of the calculated spectrum be demonstrated. 
In the two other versions it falls far beyond the region 
of the spectrum. 

DISCUSSION 

The quasi-molecular model of the spectra appears 
to be effective in describing electronic spectra of polar 
dye solutions. This was demonstrated in detail for the 
absorption and fluorescence spectra of ethanolic solu- 
tions of some coumarin molecules. (11) An important con- 
clusion may be drawn: all the investigated spectral 
profiles are not very sensitive to the individual, specific 
chemical structure of the components and the same the- 
oretical formula is able to reproduce spectral profiles of  
absorption and fluorescence of polar dye solutions. The 
result of the analyses of the spectra performed are nu- 
merical values of some important molecular parameters 
of a dye solution. 

The main concept of the quasi-molecular model, 
which describes the spectra, originates from the liquid 
solution structure. (a4) Under normal conditions there is 
always the possibility of the existence of  some order in 

a mutual distribution of components. The intermolecular 
distances between dye molecules and the closest neigh- 
boring solvent molecules are assumed to be not less than 
the diameter of the molecule. This assumption may be 
drawn from the analysis of the interaction forces of re- 
pulsion. It is also assumed that distances much larger 
than the molecular diameter are statistically less proba- 
ble and hence all such contributions are ignored. It is 
understood that such assumptions introduce certain reg- 
ularity into the intermolecular distance scales. As a result 
of the said regularity, which is the basis of the model 
discussed, we can further assume that each dye molecule 
resides long enough within its particular environment. 
The fluctuating field acting on each of the solvated dye 
molecules within a quasi-molecule can be replaced by 
an average field of spherical symmetry. 

If the interaction between a dye molecule and a 
single molecule of the solvent is known, the interaction 
potential of the dye molecule with all neighboring sol- 
vent molecules may be obtained after some averaging 
procedure over all two-particle potentials. The energy of 
interaction is then a function of distance only. The av- 
eraged potential can be approximated by a Taylor series. 
Leaving just the first term of the expansion, we obtain 
the harmonic approximation, while the next higher term 
leads to anharmonic representation. 

The forces of interaction of dye molecules with the 
molecules of the solvent are much weaker than the 
chemical binding forces. Therefore, due to the large 
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masses of the molecules, the energy of oscillation quanta 
are small. Hence, the quasi-continuous distribution of 
oscillatory sublevels and the semiclassical approxima- 
tion seem to be well justified. The large value of the 
molecular masses and relatively small elastic forces of 
the system allow us to assume that the molecular oscil- 
lations are characterized by high amplitudes even in 
cases of energies less than kT. Consequently this leads 
to a limitation of the utilization of harmonic approxi- 
mation. 

Normalized fluorescence spectra of dye molecules 
with large dipole moments dissolved in polar solvents 
are, as a rule, structureless. From a mathematical point 
of view such spectral profiles are four-component 
curves. Analysis of fluorescence spectra of polar solu- 
tions of coumarins indicated that an exact computer fit 
by the harmonic approximation to experimentally ob- 
tained spectra cannot be performed. This justifies the 
necessity of an extension of the harmonic approxima- 
tion. It also makes clear the important role which is 
played by the high-amplitude oscillations in the forma- 
tion of the profiles of electronic bands. 

In the anharmonic approximation, if the tempera- 
ture is not taken into account, the description of fluo- 
rescence spectra depends on four parameters, b I, cg, % 
and ca,. The latter arises from a compromise: the initial 
state of fluorescence is not modified according to the 
anharmonic model. However, such a compromise leads 
to a change of the parameter c e taken from the anhar- 
monic model compared with the value of this parameter 
in harmonic models. Hence, the physical value of this 
parameter has qualitative meaning only. For all investi- 
gated cases the anharmonic parameters are positive, 
which means that with an increase in the amplitude of 
oscillations, the force of interaction increases faster than 
linearly. In the theory of vibrations such a case is de- 
scribed as a hard interaction. This result has to be un- 
derstood as a limited motion of a dye molecule among 
the molecules of the solvent. 

The question now arises if exact knowledge of po- 
tentials of high-amplitude motion is necessary at this 
stage of investigation. From the expression of interaction 
energy for a pair of molecules, the average potential can 
be deduced, but the reverse procedure is rather ques- 
tionable. It seems, however, that the parameters of av- 
eraged potentials received experimentally may possibly 
be connected to the parameters of assumed bimolecular 
potentials. It is also obvious that in such a process the 
result of an assignment to a particular model will make 
a great difference. Such a problem, however, calls for 
separate studies. 

i ~ i i - -  i 
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Fig. 1. Fluorescence spectra of coumarin 120 in ethyl alcohol calcu- 
lated (solid lines) according to model I (a), model II (b), and the 
anharmonic case (c), together with experimental spectrum (dots). 

COMPUTATIONAL ASPECTS 

Spectral parameters of a dye solution may be found 
by fitting the theoretical spectral distribution represented 
by (3) to the experimentally obtained spectrum using a 
nonlinear least-squares search. It is not important what 
particular algorithm is utilized. We used a noncommer- 
cial program written in Turbo Pascal 6.0 by Borland Int. 
according to the simple algorithm described in Ref. 15. 
To calculate the spectral distribution the coefficients k 
[yi(e)] in (3) for every e must be found. To get at this 
the algebraic equation (5) must be solved and its real 
solutions determined. Once found, the spectral distribu- 
tion for the interaction potentials (6) and (7) reads 

2 
~f(c) = ]~ exp { -  ce[y p (g) -- 1]2/kT} for c < e l i  m 

~-' 12(% - ce)yv(e) + 2c~1 

(17) 
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and for the potentials (10) and (11), 

exp{-ce[yp ( e ) -  1]2/kT} 
%(s) p = 1 1 4 C a n Y ~ ' ~ C g 7 7 e ) y p - ~  + 2Ce] for S < elim 

(is) 

where yp(a) are real roots of Eq. (5) for a given e. And 
in both cases, 

o-f (s) = 0 for s a eli m (19)  

It is worthwhile to note that for the anharmonic 
case, in order to calculate crj(e), the fourth-degree equa- 
tion must be solved for every e. In the harmonic case 
the analytical formula for ~:(s) is knovgn ,  (7) which sim- 
plifies and accelerates the calculations. Therefore, it may 
be convenient to use this approximation in certain cases, 
remembering its limitations. 

Since the experimental data are known with well- 
defined accuracy, appropriate statistical weights must be 
ascribed. Only a few hundred experimental points for 
every structureless spectrum of dye solution may be 
considered. 

In the case of the harmonic approximation three 
physical parameters (b, cg, c~) must be recovered. In the 
anharmonic case described above there is one more pa- 
rameter (co,,) to be found. Finally, according to formula 
(1) the constant number Fo links the spectrum profile 
%(~) and the experimental spectrum F(e). The particular 
value of F o carries no importance in this study, com- 
prising, among other factors, the specific apparatus sen- 
sitivity. Nevertheless, it must be recovered. Conse- 
quently in the harmonic case four parameters, and in the 
anharmonic case five parameters, must be found. It 
should be noted that there is no correlation observed 

between parameters for such structureless spectra as ob- 
served for coumarins. In conclusion, such featureless 
spectra carry information about anharmonic effects, and 
in addition, this information may be successfully recov- 
ered using our new model. 

ACKNOWLEDGMENTS 

We would like to thank Dr. Lesley Davenport from 
the City University of New York for her comments on 
the manuscript. This work was supported by the Polish 
Government through KBN Grant 2 PO3B 124 09. 

REFERENCES 

I. F. E. Williams (1951) J. Chem. Phys. 19, 457. 
2. K. Huang and A. Rhys (1951) Proc. Roy. Soc. (L) 204, 404. 
3. S. I. Pekar (1950) Zhur. E. T. Fiz. 20, 510. 
4. S. Kinoshita, N. Nishi, A. Saitoh, and T. Kushida (1987) s Phys. 

Soc. Japan 56, 4162. 
5. B. I. Stepanov and V. I. Gribowskij (1968) Theot T of  Lumines- 

cence, Iliffe Books, London. 
6. D. B. Siano and D. E. Metzler (1969) 91 Chem. Phys. 51, 1856. 
7. A. B aczyfiski, P. Targowski, B. Zi~tek, and D. Radomska (1990) 

Z Naturforsch, 45a, 618. 
8. A. B~czyliski, P. Targowski, B. Zi~tek, and D. Radomska (1990) 

Z Namrforsch. 45a, 1349. 
9. A. B~czyfiski, T. Marszalek, D. Radomska, P, Targowski, and B. 

Zi~tek (1992) Acta Phys. Polon. 82, 413. 
10. A. B~czyflski and D. Radomska (1992) s Fluoresc. 2, 91. 
11. A. Bgczyfiski and D. Radomska (t995) J. Fluoresc. 5, 91. 
12. A. Messiah (1961) Quantum Mechanics, John Wiley and Sons, 

New York, p. 469. 
13. M. Ito (1987) ,L Phys. Chem. 91, 517, 
14. I. Prigogine (1957) The Molecular Theoly of solutions, North- 

Holland, Amsterdam. 
15. S. Brand (1970) Statistical and Computational Methods in Data 

Analysis, North-Holland, Amsterdam. 


